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EQUATIONS FOR THE KINETIC MODELING OF SUPERSONICALLY FLOWING'

ELECTRICALLY EXCITED LASERS

Richard C. Lind

Ames Research Center

ABSTRACT

The equations for the kinetic modeling of a supersonically flowing
electrically excited laser system are presented. The work focuses on
the use of diatomic gases, in particular carbon monoxide mixtures. The
equations presented include the vibrational rate equation - whichdescribes
the vibrational population distribution, the electron, ion and electronic
level rate equations, the gasdynamic equations for an ionized gas in the
presence of an applied electric field, and the free-electron Boltzmann
equation including flow and gradient coupling terms. The model developed
accounts for vibration-vibration collisions, vibration-translation collis-
ions, electron-molecule inelastic excitation and superelastic de-excita-
tion collisions, charged particle collisions, ionization and three body
recombination collisions, elastic collisions, and radiative'decay, all
of which take place in such a system. A simplified form of the free-
electron Boltzmann equation is developed and discussed with emphasis placed
on its coupling with the supersonic flow. A brief description of a
possible solution procedure for the set of coupled equations is then
discussed.

INTRODUCTION

1
The concept of a fast flow laser system is: not new . It has been

demonstrated for electric discharge CO2 laser mixtures, in both cw and
pulsed operation, that a considerable Increase in power can be achieved
with the use of fast flow2

-
1 1. The addition of fast flow gives several

attractive features: (a) the power output scales with the mass flow
rate - this can represent up to a factor of 105 increase in power over
that obtainable from conventional diffusion controlled laser systems,
(b) the translational temperature of the gas is maintained at a low
level by the convection which prevents the lower laser level for CO2
systems from becoming populated to such aniextent that the inversion is
destroyed, and is very important for diatomic laser systems, which we
shall mention below.
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To understand the importance of low translational temperatures for
diatomic laser systems the mechanisms responsible for diatomic laser
action will briefly be mentioned. When considering diatomic molecules,
the anharmonic structure, i.e. the small decrease in spacing between
vibrational energy states with increasing quantum number, introduces a
new and crucial factor that leads to the processes which can ultimately
produce laser action. Treanor et.al.1 2 have shown that during the
collision of two such anharmonic diatomic molecules the subsequent exchange
of vibrational energy (V-V exchange) can lead to significant departures
from a Boltzman distribution of vibrational energy. Specifically, in
Ref. 12 it has been shown that under the conditions of a low translational
temperature together with a high degree of vibrational excitation,
population inversions between the combined vibration-rotation levels of
adjacent vibrational states can occur. Such inversions then provide
the basic mechanism by which diatomic lasers operate. In addition, to
maximize the radiative gain on a particular vibration-rotation transition,
once the inversion has been achieved, the number of molecules at the
level in question must be maximized. This occurs when the molecules are
preferentially populating the lower rotational levels, which occurs for
low translational temperatures (assuming rotation is in equilibrium
with translation).

The conditions of high vibrational excitation and low translational
temperature occur naturally in the supersonic expansion of a gas from
a hot reservoir. The oiurance of these conditions in such gasdynamic
expansions led McKenzie to develop the CO gasdynamic laser. Defining
efficiency, for the gasdynamic laser, as the-ratio of laser power output
to input enthalpy flux, where the latter is the power used to produce the
heated reservoir and associated supersonic flow, McKenzie obtained
efficiencies on the order of a few tenths of a percent for the CO system.

On the other hand, electric discharge lasers without flow have very
high efficiencies but low power. For a CO system Bhaumik et.al.14 has
recently obtained 46% efficiency for conversion of electric power to
laser power. This is the highest efficiency demonstrated for any laser
system, polyatomic or diatomic. For such a system the laser gas is
essentially in a static condition, cooled by liquid nitrogen, and excited
by a glow discharge. The reason such high efficiencies are possible is
that the input electrical power goes predominately into exciting the
vibrational levels of the gas by electron-molecule collisions. This
leads to the condition of high vibrational excitation, while the liquid
nitrogen cooling provides the low translational temperature. However,
since this is a static discharge laser, and consequently diffusion
controlled - i.e. removal of heated gas is by diffusion to the walls, the
advantages of increased power levels with fast flow rates are not utilized.

Consideration of these facts indicates that the use of electric
discharge excitation combined with fast flow rates could potentially lead
to highly efficient high power lasers. This is based on the separate
advantages of each, and assuming that when combined they do not adversely
effect each other.
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Recently, laser power, using two different schemes but employing the
features of electric discharge excitation and fast flow in CO mixtures has
been demonstrated. First, Rich et.al.15 (and later Kan et.al.1 6 ) excited
a CO mixture with a glow discharge in the plenum chamber of a supersonic
nozzle and then allowed the excited mixture to expand to supersonic
speeds. It is clear that such a scheme produces the necessary conditions
mentioned before for diatomic laser operation. However, this scheme
produced a relatively inefficient laser with efficiencies of the order of
a percent. This is due to the fact that much of the vibrational excitation
produced in the plenum is lost to heating the gas in the subsonic portion
of the expansion. The second scheme, developed by Kan et.al.17, is
essentially a direct extension of the liquid nitrogen cooled static
electric discharge mentioned previously, whereby a fast flow rate of
CO is now employed. This scheme used subsonic flow rates and relied
on liquid nitrogen cooling and thus did not utilize a supersonic expansion
to give the low temperature, and the concurrent further increase in
power that would result from such an increased speed. However, this
scheme did achieve efficiencies up to 26%.

These two schemes, representing initial approaches to combining fast
flow and electric discharge excitation in diatomnic gases have certain
disadvantages, as mentioned above. With the prospect of more fully
utilizing the advantages of each feature the intent of this work will
be to discuss the situation of electric discharge excitation occuring in
a supersonic stream.

This leads to important questions as to themechanisms taking place
in such combined systems, and the result of using supersonic flow,
with the discharge occuring in the flow. For the case of electric
discharges in a supersonic stream, questions concerning the stability
must also be answered. Here, we assume a priori that such a discharge
is feasible.

With these ideas in mind it is the purpose of this note to develop
a kinetic model for the case of a supersonically flowing CO mixture
with a stable electric discharge established in the flow. This note is
in the form of a summary of the work done to date which consists of a
development of the equations relevant to the problem and a brief
description of a possible solution procedure.

BASIC THEORETICAL MODEL

Physical Model

The geometry employed is that of a supersonic nozzle in which the flow
is to be established (see Fig. 1). In some region of the nozzle, electrodes
are situated such that a discharge, alligned with the flow can be produced.
The laser power is then extracted transverse to-the flow and discharge

direction. In the sketch shown, the discharge is located in a region of
uniform flow properties, although it may be located in any portion of the
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nozzle; even the reservoir, as in Rich's15 experiment.nozzle; even the reservoir, as in Rich's experiment.

For efficient excitation of the vibrational levels of a gas by electron
collisions the average electron energies are those conveniently obtained
in the positive column of a normal glow discharge (around 1 ev). We shall,
therefore, consider only glow discharges, assumed to be fully established
in the flow, and then attempt to model the ensuing positive column region.
The questions of instability of the discharge are not considered. Such -

questions are, ofigourse, important but can be investigated separately.
(See Ecker et.al. and Nighan et.al.1 9 ). By limiting the modeling to
the positive column the space charge effects at the electrodes can be
neglected. They are crucial to the establishment of a stable glow
discharge, but unimportant in the physics of the positive column. The
problem will also be assumed to be convectively controlled (see Section 3);
thus the effects of diffusioelto the walls will be considered negligible
and the standard Schottky2 type analyses are not relevant.

The gas is further assumed to enter the discharge region in a pre-
ionized state. Preionization has an important effect on efficient laser
operation. Ordinarily, without preionization, the glow discharge is
required to be self-sustaining. Then, ionization, produced by electron-
molecule collisions at a rate sufficient to balance the loss mechanisms
present, takes place within the discharge itself to keep the gas con-
ductive. However, schemes that separate the above function of ionization
from the concurrent vibrational excitation (crucial to producing the
inversion needed for lasing) have been shown2 2 ,2 3 to considerably increase
laser performance. This is because the electrons in the discharge that
are produced by an external means, can be of lower energy than that
required to sustain the discharge. In fact, by proper tailoring of the
discharge voltage, the electrons in the discharge can then be used for
efficient vibrational excitation exclusively:.

The emphasis of this work is thus to model the interaction of a
(preionized) supersonic flow with the plasma of a positive column to
study its effects on the resulting vibrational population distributions.

Energy Transfer Mechanisms

In a discharge of the type considered, several collisional and radia-
tive energy exchange mechanisms take place. These transfer mechanisms'
are conveniently modeled by a division into six energy modes, consisting
of a free-electron mode, an anharmonic oscillator mode of neutral
particles, a bound-electron mode of neutral particles, a kinetic mode of
heavy particles, and a UV and IR-photon mode (see Fig. 2). Details of
the resulting model are similar in some parts, to the models described
in Ref. 24, 25, 26.

Referring to Fig. 2 we assume that the free electrons, accelerated by
the applied electric field, participate in the (numbered) energy transfer
mechanisms of: (1) inelastic excitation and superelastic de-excitation
collisions with the vibrational and electronic Uevels, (2) elastic
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collisions with heavy particles, (3) ionization and three-body recombination
collisions, and (4) electron-electron collisions. This energy distribution
is subsequently redistributed by: (5) vibration-translation collisions,
(6) vibration-vibration collisions, (7) radiative decay of electronic
levels (8) radiative decay of vibrational levels and finally, (9) possible
induced radiative transitions between vibrational levels. Several
assumptions are implicit in this model: (a) the gas mixture consists of
electrons, singly charged ions, and nuetrals - of which several monatomic
and diatomic species are allowed, (b) translation and rotation are in
equilibrium at the temperature T, (c) the excitation of ion electronic
states is negligible, (d) the ions are in kinetic equilibrium with the
neutral particles, (e) dissociation is ignored, and (f) photoionization
and two-body recombination are negligible.

One further simplification will be to neglect at the outset the effect
of stimulated emission (process 9) since we are only interested here in
the calculation of radiative gain prior to the introduction Of any laser
applications.

The free electrons in this model are not expected to be in a Boltzmann
distribution. In fact, for conditions typical of CO and CO lasers, it
has been shown theoretically2 7 and experimentally2 8 2 , the distribution
is profoundly non-Maxwellian and is strongly affected by the electron-
molecule energy processes discussed above. Since the electron-molecule
collision rates (needed to determine the vibrational population distribution),
the electron temperature, the heat conduction, and the current density, are
all averages over the distribution of electron energy it is clear that a
knowledge of this distribution is needed for an accurate representation
of the model. 

In summary, the energy transfer mechanisms discussed above, together
with an appropriate development of the free-electron-Boltzmann equation
are postulated to sufficiently model the combined flowing gas-electric
discharge situation under consideration. In Section 3 to follow, the
necessary rate equations for the model are given. Section 4 presents the
standard gasdynamic equations-for an ionized gas in the presence of an
applied electric field. Finally, in Section 5 the free-electron Boltzmann
equation is developed and certain simplifications are then made that are
appropriate to the present model.

RATE EQUATIONS

The equation necessary to describe the vibrational population dis-
tribution of the laser gas mixture is the species continuity3 0 ,3 1 equation
for the vibrational levels. For a general unsteady flow problem this
equation is

at + V (n4 v) =nsk k = 0,1,2... Ns, (1)

k
where n is the number density of species s in level k, v is the

5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~S S
.k

species velocity and, ns is the net rate of production of species s
in level k to be determined from a consideration of the energy transfer

processes described previously.
7



.k
Before proceeding with the expression for nk the conditions that

insure a convectively controlled problem will beSpresented. We find,
after an examination of the left-hand side of Eq. (1), that two conditions
must be satisfied. These are:

~ L Damb , (2)uO >> - Damb ,
d2

and

Uo >> VF, (3)

where u, VF, L, d, and D 6 are: characteristic flow velocity, electron
amob'

diffusion velocity in the supersonic flow direction, discharge'axial *
length, discharge transverse length, and ambipolar diffusion coefficient .

Each condition can easily be checked once a solution is known. In
fact, values for VF can be calculated exactly from the formulation to
be discussed in Section 5.

For the present problem we assume that the above conditions are
satisfied and thus Eq. (1) can be written for each vibrational level k,
for steady one-dimensional flow, as follows:

pud (_ A)= nk k = 0,1,2 ...Ns, (4)

where y is the coordinate in the one-dimensional flow direction, p
is the average density, and u is the mass average velocity..

To dktermine the expression for the production of excited vibrational
levels,n , we take into account certain of the energy transfer processes
describedSin Fig. 2. These consist of the following collisional and
radiative processes:.

(i) Inelastic and superelastic collisions.:with electrons - process 1.
(ii) Vibration-translation collisional exchange with the various

constituents - process 5.
-(iii) Vibration-vibration collisional exchange within the laser gas

and other diatomic constituents - process 6.
(iv) Excitation due to the spontaneous emission from the excited

electronic level - process 7. We assume here that only one
electronic level (a3 E) is excited sufficiently to participate.
in the energy transfer processes.

The development of these conditions follows a discussion given by
Hassan and Bordeaux . Here, however, the diffusion to the walls takes
place by electron-ion ambipolar diffusion3 3.

8



(v) Spontaneous emission - process 8.
(vi) Possible ionization and 3-body recombination effects.

In addition, the modeling includes the following features:

(vii) The vibrational quantum states of the diatomic gas are
treated as those of a Morse anharmonic oscillator3 :

e K 0 k[ - (k+ )], (5)

where

9 = characteristic vibrational temperature,
s

A = small anharmonic oscillator parameter,
5

K Boltzmann constant,

k
s ' energy of the k vibrational state of species s.

(viii) With the exception of vibrational transitions induced by
electron collisions, only single quantum transitions are
allowed. 

(ix) The free electrons in the discharge are not assumed to be in
a Maxwell-Boltzmann distribution and consequently several
parameters will be needed to characterize their properties.

(x) For the excited electronic state its ground vibrational level
is the only level assumed to be populated.

Combining these various features of the model with Eqs. (4) and
defining the mole fraction of species s in level k as

k
· ~~~~~n sk

* k (6)
YEns

we obtain the following vibrational rate equations for x :

k k- 1 NsdUJ Qksp + Xe DQk + X2 Rk
.y . ' SP X 

p Q=O Q=k+l

k-I Ns

dx[~ k2 k ~~k2 k £kx

X E R kQ Xk E R X Rsk + XXe Rsk

p 2=0 2=k+l (7)

k ksk- I k+ k+lk E k xx
·X A s As + Xsf A k =0,1,2 Ns·

9



In this equation the first term on the right-hand side accounts for vibration-
vibration (V-V) and vibration-translatio~ (V-T) collisions and is given,
between species s and p, by McKenzie3 as follows:

Z = average collision rate
sp

- dm pT(8)

2
where d =

sp
average collision cross section for encounters between
species s and p,

p = reduced mass,

pm = molecular mass,
m = molecular mass,

(9)= Em ,
s s

k
Q = molar production per collision
Qsp

= Qsp]v-v + [QSPIV-T , ; (10)

where

/2+1,2 ek~k-l\ 21 
[qkp]V-V = IPs p QQk-1/[xk~I xQ+ 1 exp T- ' _X

SP _ = E PSP k k-1 S kPex t cT I scT 3_
. ¢.~

+ Psp (k+l k)[Xs P k
- ep(+li,Q

x2+ 1 exp\ ~ -T

and [Q sp ] V-T =( x) { pksk-" xk-1
I Ip L 

exp ( kk-1 _ I
KES ) X, j

+pk+lk [Xk+1 _ exp 
(12)

ab
In the above notation P' is the V-T probability per collision that
species s will make tfl transition from vibrational quantum state a to
b as a result of an encounter with species p. Similarly P (mn) is

sp a,b
the V-V probability per collision that an encounter between species s
and p will cause an a to b transition in species s and a simultaneous

10

k+lk\l1
IcT AI I

(11)



m to n transition in species p..

It is beyond the scope of this paper to discuss in detail the appro-
priate expressions for the above transition probabilities and consequently
we will briefly describe those to be used and cite references for the
interested reader. For the V-T probabilities, which are reasonably well
established, the functional form given by Schwarz, Slawsky, and Herzfeld3 5

modified by Keck and Carrier3 6 and normalized to fit the data of Millikan
and White3 are to be used. The expregions obtained in this manner can be
found in McKenzie and also Rich et.al.4 The V-V probabilities to be used 
include contributions from a short range interaction as done by Rapp-
Englander-Golden and a long range interaction important at low temperature
as treated by Sharma and Brau3 9 .' A detailed'discussion of the expressions
obtained from such considerations is given by Jeffers and Kelley4 and also
by Rockwood 41. ' ' 

For the remaining terms in Eq. (7) the following definitions apply:

x = mole fraction of electrons, ' '
e '

x = mole fraction of ions of species s,
E 
E .

x = mole fraction of neutrals of species s in the ground
s vibrational level of the excited electronic state, where

excited electronic'state is denoted by E,

ab -
A = Einstein A coefficient (sec i) for spontaneous

s species s, obtained from Penner4 2 for a Morse
and is given by: 2

Ak~k- / = * e)|-1 |A~' "
AR10

.. .\ ~/AR ,

r (A-?) 1
L(I-,) (AS -

/i (-1)2

I IV A-S, 
Rate coefficient (sec ) for':
ground vibrational level of ti
to vibrational level k of t]
species s43, 

_ 64r4 E3 R 2 I ,ok
- ~~~(Es ) s 12 qs 

gk 3h c3

=electron-molecule vibrational

=P 2() ef (e,y) Se2 (e)de,
m ·, '~~~~~~~~~~~

the

emission for
oscillator

2k-1 2 k-l) -- 2k-3 

2k-l (AS ) (14)

spontaneous emission from the
he excited electronic state
he ground electronic state of

(13)

(15)
.excitation

excitation rate (sec' )

(16)

11

where
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R k= inverse electron-molecule de-excitation rate

s P 00 /2\ kQ/2 a 
m I~ke (m- e eSs (e)f(e-es ,y. (17)

k
R = collisional ionization rate coefficient

s 00

m pJ (/ 2 )' ef°(e,y)SsX(e)de, (18)

k
R = rate coefficient for inverse three-body recombination process
S

21 \ /2 / h2 \~" 3/ 
= \me) k lm)) J ef ° (e-e , y)de 19)

where kX
skX (eb,Y) ( s E-e e b,Y)dbf - SS (e,eb) (eby) kX d

o. fo( kXy)

q5k = Frank-Condon factor for transition from ground vibrational
level of excited electronic state to vibrational level k'
of ground electronic state, 

liRes 2 = electronic transition moment,

kE
£k = energy difference from vibrational level k of ground

s electronic state to ground vibrational state of excited
electronic state,.'

= free-electron energy (ev), .

f (c,y) = energy and spatially dependent isotropic electron
distribution function (to be discussed in Section 5).,.

kP.
S k (c) = energy-dependent collisional cross.section for vibrational
s excitation of species s,

kX
S (E) = energy-dependent collisional ionization cross section

of species s,

kU 2 k
es = e5s _s ,

kX X k
e es Es= Es

where E is the ionization energy. ...
S

In the above expressions detailed balance has been used to relate the
inverse processes4 4. The spectroscopic constants needed can be found in
Herzberg43 or in the NBS4 5 tables.

We note,that if the electron distribution function is Maxwellian at a
temperature T then the inverse rates are simply related as follows:

e

12



( k2\

R~k -kQ e 5 '(20)Rs= R, exp Ke'(0

and
2T)3/ kX

R * -- kX 1 / h\ 3/2 (Esk ,21Rs Rs' exp (21)

where the barred rate coefficients are calculated for a Maxwellian dis-
tribution.

Equation (7) is written for diatomic gases of species s. If a
monatomic gas is also employed in the mixture then an appropriate rate
equation, taking into account electronic excitation, ionization, and
possibly spontaneous emission is required. This is easily obtained from
Eq. (7) by setting the first and last terms on the right-hand-side to
zero and interpreting the indicies of the remaining terms as associated
with electronic levels of the monatomic gas. It is clear, however, that
with the magnitude of the electron energies 'that are dealt with in this
model only one or two electronic levels will be excited, with the pre-
ponderance of the atoms being in their ground electronic state.

In addition to the vibrational rate equation, rate equations for the
excited electronic level, the ions, and the electrons are also required. For
the present model these equations'are:

electronic level rate
E

u d ='-xexs REs + xe(% xk)RE -XXE REX + X2 XIsRsE - Xex AsEk , (22)u dy k kY ~~k · I e.s k "

ion rate

dx's k kk X2 1 Xk E EXE *2 I XE I
u dy = Xe S k- RXs, RsX+ XeXsRs XeXsRs -ws (23)

k k

electron rate

dxe
u dy = s (W), (24)

where

Eo
R = rate coefficient for de-excitation by electron collision to

s 'ground electronic state-assumed independent of vibrational
states.

GASDYNAMIC EQUATIONS

To determine the flow and thermodynamic properties the overall mass,
momentum, energy, and the equation of state are needed. For the reader

13



who may be interested in problems other than the steady quasi-one-dimensional
model employed here, the mass, momentum, and energy equations will first
be written in general form and then specialized to the present model.
Assuming an inviscid flow in the presence of a electric field with no
imposed magnetic field these equations are3 , j :

overall mass

ap
3 +V ' (pu) = 0, (25)

overall momentum

Du
P-Dt +Vp = PeE, (26)

overall energy

D(I U2h) -a _ V .q +E' J +QIN (27)+h 2- at (7

where

D a
DFt at

p = static pressure of mixture,

Pe = free charge density = (En-n)e, e electron charge magnitude,

h = total enthalpy of mixture,

q = heat conduction,

J = total current density = peu +e( nsVs neVe),

V = ion diffusion velocity, -1~

V = ion diffusion velocity,
5

V = electron diffusion velocity,
e

QIN = heat added per unit volume due to inelastic effects,

E = electric field strength.

We' now specialize these equations to steady quasi-one-dimensional flow,
add the equation of state, and.make the additional assumptions of (i)
neutral plasma, (ii) mixture of perfect gases, and, (iii) no heavy
particle heat conduction, to obtain the following:

overall mass

d (pAu) = 0, (28)
dx (8

14



overall momentum

pu + + -= 0(29
j9U dx dx (29)

overall energy

d 1I aqepu d( u2+h) = x + E J + Q IN , (30)

state

P = (XKT + KT [x, + (XE + I Xk)+ ; (2;Xk)],(1~~s d k s m k )~~s (31)m s--d k s=m (31

P 1 33 5k kk E

P+ I {

h p+ m XeKTe + 2XeKT+ Z [XeKT+ 2 T (I X s
k

) + Z

k
x eS + xs eS ]p m 2 2 ~~~s=d 2Sk +

(32)

s=m 2 k ks 32)

where the nomenclature used is:

d = diatomic constituents,

m = monatomic constituents,

A = A(x) cross sectional area,

k
s c = electronic energy of the kth level of monatomic species s,
s = m

and
[X NS- I N5

QIN P [X RQkXkRkQ + XQkAk] ckQ
M Z xe E [s Rs xs Rs +Xs s

k Q=k+l

k OE E EooE k kX+ lXk C+ [(Zx k.)ROE -xE R l]es + [-xR +XeXsRk] S (33)

EEX I kE EX Qk k2 
+X[-s s]R s + E3 2] + S + (ZspQsps k) ·

k k-+ [- R~' +XeX~REI +k~k-1 (ZQpE)]

To complete the formulation expressions for the current density J,
electron heat conduction qe, anhd electron temperature T are needed.e9 e

The current density for a neutral plasma is given by the conduction
current density as

J = e(YnsVs-neVe). (34)
S

15



But for the case where the electron energy is much grea er than that of the
heavy particles, such as is found in glow discharges V /Ve<<I, therefore

the current is carried by the electrons only and is given by

J -eneVe (35)

The electron diffusion velocity V is calculated from an integral of the
electron distribution function asefollows4 6:

Ve (= (12 f ef'(e,y)de. (36)ve = 3\e/ o

The same is true for T and q and they are given by46
e e

00Te =-2 1 J e3 / 2 fo(e,y)de, (37)

and

qe 3 p Xe f e2 f'(e,y)de. (38)qe =--: m N/ xe (38)

In these expressions, as well as the rate coefficients discussed in the
previous section (Eqs. 16-19), the functions f (c,y) and f' (E,y) appear.
These functions represent the first two terms of a series expansion
of the free-electron velocity distribution function. (The procedure by
which they are obtained, and the equations governing them will be given
in the next section.) They are obtained from a solution of the free-
electron Boltzmann equation which is itself coupled to the gasdynamic
equations.

For the present discharge model we will be concerned with weakly
ionized plasmas, that is

xe/I x <<1
s,k

For this condition we find, after a comparison of the various cross
sections that appear in the rate equations, that all three-body recom-
bination terms can be neglected. This, coupled with the assumption of
a neutral plasma eliminates the necessity of determining the mole fraction
of ions so that the ion rate equation can be dropped from the system of
equations.

We thus have a system of 8 + s(l+N ) coupled equations consisting of.
Eqs. (7), (22), (24), and (29) through (32), and the equations for f° (cy)
and f' (c,y) (see Eqs. (42) and (43) of the next section) together with.
auxiliary equations, for the system of unknowns: p, u, T, p, h, x, x

ke S

xS, f (c,y) and f' (e,y).

Finally, when this system of equations is solved and with the solution
for the vibrational population distribution known, the small signal gain
can be calculated. A detailed derivation of the necessary gain equation
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for the case of Doppler and pressure broadened lines for a diatomic gas
is given by McKenzie and will not be repeated here.

ELECTRON KINETICS

Boltzmann Equation

As previously mentioned the free electrons in the discharge are
generally in a non-Maxwellian distribution. The fundamental equation
governing this distribution is the Boltzmann equation. Analysis of
various features of this equation have been done in the past27,44,46,48-54
however, it is convenient here to summarize those features appropriate
to the present model.

In a frame of reference moving with the mass average velocity of the
fluid, the e.gctron velocity distribution function f(c,x,t) satisfies
the equation 

D(nef)+ - Vx(nef) - + DE nfeVcfC Vx u neVc
=

f = 

-m-Dtme . a COLL' (39)

where V and V are the gradients with respect to the spatial
coordinates and eJectron velocity, respectively. The right hand side
of Eq. (39) represents the rate of change of f(c,x,t) in a series as
follows:

f(c ,x,t) = f0 (c,x,t) + f (c,x,t) + , (40)
C

where

If'(c,x,t)l << f°(c,x,t). (41)

The function f represents the isotropic contribution, and .' gives
the small anisotropic contribution to the velocity distribution function.

Substitution of Eq. (40) into Eq. (39), and sugcessive integration
of the velocity moments ofthe resulting equation ., yields a sequence of
coupled equations for f , f,. . . . . Transforming this set of equations
to the independent variable e, the electron energy E= 1/2 m c2; using

e
the condition of Eq_ (41) and assuming that [ul4c, we obtain two coupled
equations for f (E,x,t) and f'(e,I,t) as follows:

CM/2 D oe a
-2 (ne f 0 ) + Vx( ne f ') - E2 3 ~ ~~3 Bae

-Dne (3e e 3 aee3 Vu at COLL

' *

In McKenzie's derivation the expression for AS '
k

should be
replaced by that given by Eq. (13).
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and
me D (fe' Di af° _ Cf'
2e · --e-nm Dt 46 at 'COL (43)(2e) / '(ne') )+ Vx(nef° ) -neeE 

a
f

° Dt a = a C ' (43)

where f is normalized such that
00f e/ f 0 (e,x,t)de = 1 (44)

0

With this normalization, if the distribution were Maxwellian, at temper-
ature T (A,t), under the present approximation the distribution function
would be given by

f 1ax(e,x,t) (KT )31 exp(-e/KTe). (45)7T CK~e)3/ (45)

Note that from Eqs. (42) and (43) the conservation equations of electron
energy and momentum ca, be derived. To obtain the electron energy equation
multiply Eq. (42) by (e)l/2cds and integrate over all electron energy.

me
With the electron energy equation written in such a form it is then
possible to obtain the fraction of power transferred by the electrons
to the various modes of the gas, in particular, to the vibrational levels.
In this way the parameters in the problem can be adjusted to maximize
the amount of power transfered to the vibrational levels and concurrently
the laser efficiency. Such an analysis has been carried out for a

27
static discharge by2 Nighan . To obtain the momentum equation multiply
Eq. (43) by 2/3 c3 2 dE and integrate over all electron energy.

Collision Terms

The remaining expressions required are those for the collision terms.
Considerable simplifications arise in these terms because the electron
mass is much smaller than that of the heavy particles, causing the heavy
particle speed to be much smaller than that of the electrons even for
high supersonic speeds. Thus, the collision operators can be approximated
by the operators occuring in a plasma of motionless heavy particles and
moving electrons. For the energy transfermechanisms included in this
model the collision operator consists of a sum of four contributions
accounting for elastic-heavy particle collisions, f/ tleh ionization

and three-body recombination collisions, f/tlion charged particle

collisions ]te-e, and most importantly, inelastic and superelastic

excitation and de-excitation collisions f/ tlex Expressions for the

collision terms for these types of collisions employing the small electron
mass approximation have been developed in the past 4,48 ,51,54 and
those appropriate to the present case will be given. For the fo operators
we have:
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af' 2me a h=, In ae 2nZ-- (Eat eh 2 a nsQsh (e)sh Sm s ue

N 5
= ne E eCs nsne 

s k=OI0 O

[f°(e)+kT af (e), 
(46)

kxe-e Sk X(eeb)f(eb) f(e )deb
Ss k(C,e b ) f ° ( e b ) · f°(E-Cb esk)deb

- enskf°(e)Ssk(e) + 2,n k j eCf° (ei)skX(ei,e)dei
0

00

on

-2n In Csk f°0(e) fo
e k X(eie4k x)Sk(ee)deei f' (IEi-e-es)Ss (ei,e)dci,

} 

(47)

= ne 3( 3nfe(KTe)2Q-i [o fo(e) + e-

Saf(e) 0 )' 1) 'ae (12 + J-o,) 1

Ns-k

= ne / Z:
s k=o

N S

2=k+l

[f°(e+e kQ) 
s ) - .

{ (+e~ )S s (e+es)ns .

gsk nsf(e ) ++ k ke
Q k f (E +ns E Ss (IE)'

g~ ns

[fo (e ~eke ) I -s nse) 
g (ekQ 'fo n(e)_

eS k

C~ - gS ( h2 \3/2 VL
Csk 2g \ 27rme/ 2

0 4. 0where f°(E,x,t) is written as f°(0) for convenience.

Here the sum in Eq. (46) includes all heavy particle species, and
i=E +kb+E + is the energy of the incident ionizing electron. Theis b 1

following definitions also apply:

ehQh(e) = energy-dependent electron-heavy-particle momentum
transfer cross section,

eiQe = energy average electron-ion cross section,
Qs

= 611(e2 /12T1E kTe)2ZnA,
0
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C
Sk

k
g = degeneracy of level k of species s; unity for vibrational

levels,

Sk (,b) = Cross section for ionization of a particle in the kth
S b

level by an electron of energy e which results in an
electron of energy zb. It is related to the conven-

tional ionization cross section S (e) as follows:
kx S

k ~ ~~ e-e,
Ss(e) = J S (E,eb)deb

0

P= = el/2(P+l)f2(e)d e,
0

JP e'/2(P+l)f2(e)de

Note that these expressions are written for a general level k. In other
words, with the proper interpretation of the cross sections, the :equations
apply for either rotational, vibrational or electronic level excitations.
However, to apply them to situations which involve all three processes
simultaneously, it must be assumed that the cross section for each process
is independent of the other. ;In this way each process can be described
by equations written in the above form and each expression can then be
added to obtain the total contribution.

To determine the expressions for the, collision operator, Refs. 44
and 46 show that only the elastic collision term is important. This is a
consequence of the fact that the electron-heavy-particle momentum
transfer cross section is larger than any of the other cross sections.
With this we find that the f'operator can be written in the following
simple form:

a~ 1 ~~~~~efr = - ~ne [In Qh(e)] (, ,t) (50)
3t COLL

where the sum includes all heavy particles.

The necessary expressions for the collision terms have now been
developed for the Boltzmann equation and, bymaking certain order of magnitude
arguments applicable to the present model, certain simplifications are
possible. By a comparison of the magnitudes of the various cross sections
(the sources of these cross sections will be given latter), we find, for
the weakly ionized gas assumed here, with m <<m , and for the average

e s
electron energies involved, that: a) the elastic collision term Eq. (46)
can be neglected, b) the first and fourth terms in Eq. (47), which
represent recombination terms can be neglected, and c) the charged-
particle collision term Eq. (48) can be neglected.
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Simplified Equations

We seek to further simplify Eqs. (42) and (43) by examining the

various terms on the lef-hand side of the equations, where we now
specialize to a steady one-dimensional case. To facilitate this we
introduce the following non-dimensional variables:

u - =._p_- e -y
u Uo p Po 

U0 Po V/2meC2 L

XkQ = Xs (e) Xeh
= eh(6)X ,(e) -kX - '? (_ i,_)

XR (2me C2),' XR (/2Me CO) 

FF = F
pO (½/2me Co )- 

1
Xs (e) S (pk

· S()/
is an inelastic collision

mean free path, Xh () -=
nQeh

S

is an elastic collision

mean free path, and F = px f. The above normalization is chosen such
that the barred variables are of order unity with the exception of F,

where F'<<Fo. With this normalization Eqs. (42) and (43) become, after
substitution of the simplified collision terms, the following:

(CR Uo) e/ aF 
\ L c0 ) a-

+ (XR 1- a- 1 (2eEXR) a (eFi)
m----Co ae (51)

Uo 2 - du 2 ~1 2/XR Uo '-3/2 duaF aFO( u0\2 d a (-F pi j -ae a
Co/ ud--- ( E ) - 3 ,T-' Co / . dy ae atdy a'e 

and

/ 'R -- /2 -1)X ~( UQI ei I.aF,\ L /\k /e/2a

F1 (-)/eh ,

where

+ (R) a FOL/ay

2eECXR aF °

\ mCo2 / ae

I - -k

I( +4s ) xk LF ( E+es )

-1 k-F 0 ( kk 9 ,
+ o' ( e-) O + QXs

k

[ - ---E)I g.(e-es xk (~'
I gs I II I

e-x 5F-(e) k
+ x k

Xs (e)
foo o(-) d e

Xs (ei,e) J 21

where

aF°-ro (52)
ae

aFo
at COLL

N 5 -l Ns

s k= =k+ s k=O Q=k+l

g k XQ

g Xk

+ 2Z
s I-

(53)

-)2(c~ dyd



Three parameters appear in these equations, namely

Uo 2eEXR
Go 

0
2 '

o me Co
aRand L

L 

Upon estimating the magnitude of these quantities we find that for the
average electron energies involved in this problem (1 ev) u o/c <<1 ,

0

and the ratio 2 eEXR

2

is of order unity. The ratio X R/L, which is theR

m c
Knudsen number, s 0 in general less than one and we will exploit this by
expanding the distribution function F in a series in X /L=6. This

R
expansion is given by:

Fo =.Fo+6F1+ .... ,(4
(54)

T =, o 1 . . . .

where 6<<1.

Thus, taking into account the above order of magnitudes, substituting
Eq. (52) into Eq. (51) to obtain an equation for F alone, using the
expansion (54) in the resulting equation, retaining only the first two
terms of the expansion, we obtain the following two coupled equations for

O and F1 (dropping bars for convenience)

-ER ±a {eXt'h a } at COLL (55)

-3 E 2 a { Jeh = a IPCOLL
2 (U.) 3/2 du aF o /u

0
\ ½ _aF. 2

3+ o/ dx a U -x-ER

1 2 a{X aFo)7'- ER ae eh -7f--.

e a fXeh aFo ax_ - -ae (56)

where 3Fo and lF are given by Eq. (53)
at COLL at COLL

2eENR
ER 2

with the appropriate substitution, and meco . Finally, the equation
for F', to consistent order in 6 and Uo/c is given by:

0
F=hRaFR + 6 aF all

F. Xeh [-ER~ +6 6 ax E eA( 7

Equations (54)-(57) give the solution to the free-electron Boltzmann
equation provided the Knudsen number is small. This confines the
region of applicability of these equations to situations where gradients
in the flow are not large.

We see from these equations that the effects of gradients and flow
velocity are demoted to second order. In fact, as one might expect for
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such a situation the equation for F , which gives the largest contribution
to the distribution function, is the same as that for a stationary gas
(see Nighan ). The difference here is that Eq. (55) is to be interpreted
as being applied locally at each point in the discharge. In a gross sense,
one can then say that to first order the presence of the discharge alters
the flow, but the flow does not alter the electron distribution in the
discharge.

To solve these equations the cross sections for electron-vibrational,
electronic, and ionization collisions important to this problem must be
known. A search of the literature gives many of these cross sections
for various gases that might be employed and certain of these references
are listed below:

CO: vibrational excitation (ref. 55), electronic excitation (ref. 56,
61), momentum transfer (ref. 56), ionization (ref. 62).

N2 : vibrational excitation (ref. 55, 57, 59) electronic excitation
and momentum transfer (ref. 57), ionization (ref. 62).

He, Ar, Xe: electronic, ionization and momentum transfer (ref. 58,
60, 62).

For the crucial electron-vibrational collisions in CO only cross
sections for excitation from ground state molecules are known (ref. 55).
Thus, when including electron collisions with excited state mg ecules
the cross sections must be estimated (see Abraham and Fisher for one
scheme of estimation).

Finally, in order to solve Eq. (55) (and(58)) which is a second-order
ordinary differential-difference equation, a numerical technique is
required. Several approaches have been used in the past4 4 ,6 4 ' 6 5 each
with its own virtues and the interested reader can refer to the references
cited for more information.

With a solution procedure for the free-electron Boltzmann equation
chosen, the remaining question is the approach to be used to obtain the
numerical solution of the coupled set of rate, gasdynamic, and electron4 7

kinetic equations. A possible scheme is to employ the method of Bailey
who obtained solutions for nozzle flows with chemical nonequilibrium. This
scheme linearizes the gasdynamic and rate equations and then employs an
implicit integration scheme to obtain the solution of these linearized
equations. This method has been used successfully by McKenzie in his
gasdynamic laser studies.

When using such a scheme the electron properties need not be considered
as independent variables such as T, u, etc., and thus they become
auxiliary quantities to be determined at each point. This implies that
the free-electron Boltzmann equation solution also becomes an auxiliary
calculation, and this can greatly reduce the complexity of the numerical
calculations.
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